Heart failure in congenital heart disease: prevalence and outcome

Improved medical care of congenital heart disease patients increased survival into adulthood from 15% in the 1960s to over 85% in the current era. As a consequence, the prevalence of adult congenital heart disease (ACHD) increased rapidly, which is estimated to be >1 million ACHD patients in North America and 1.2 million in Europe. The growing number and aging of ACHD patients led to an overall increase in hospitalizations over the last decade and a substantial increase in patients presenting with heart failure (HF) (≏20%).

The incidence of first HF-admission was 1.2 per 1000 patient-years in the Dutch national ‘CONCOR’ registry. Patients admitted with HF had a five-fold higher risk of death than those not admitted. From the same registry, the mortality was 2.8% during a follow-up period of 24 865 patient-years. Chronic HF (26%) and sudden death (19%) were recorded most frequently. The median age at death from HF was 51.0 years (range: 20.3–91.2 years). In another ACHD cohort, sudden death (26%) was the most common cause of death, followed by progressive HF (21%) and perioperative death (18%). Although patients with ACHD may not readily report symptoms, clinical HF is documented in 22.2% of patients with a Mustard repair for transposition of the great arteries (cTGA), 32.3% with congenitally corrected transposition of the great arteries (ccTGA), and 40% of patients after Fontan palliation.

Pathophysiology of heart failure in adult congenital heart disease

Heart failure with impaired systolic ventricular function

The etiology and triggers of impaired systolic ventricular function in ACHD patients are summarized in Table 1.

Heart failure with preserved systolic ventricular function

This occurs less often in ACHD patients, but is associated with specific conditions such as Shone complex and restrictive right ventricular (RV) physiology in the context of pulmonary atresia, ventricular septal defect (VSD), and major aorto-pulmonary collateral arteries.

Genetic and neurohormonal background

Heart failure in ACHD is the result not only of a structural defect but also of defective contractility or conduction. An intriguing and emerging hypothesis is that genes involved in morphogenesis during
Comorbidities and heart failure in adult congenital heart disease

Liver disease occurs in patients with ACHD. Elevated systemic venous pressures might lead to liver stiffness and cardiac liver cirrhosis. Liver disease is mostly associated with a failing Fontan circuit. Combined heart liver transplantation is in the end needed when a failing venous pressure presents with liver cirrhosis. Also protein-losing enteropathy (PLE) occurs in a failing Fontan. Elevated systemic venous filling pressures are considered to trigger PLE. Diuretics and fenestration between the systemic venous return and the pulmonary venous atrium, allowing right-to-left shunt, might reduce PLE. Also oral steroids as budesonide might improve symptoms and stabilize serum albumin levels; however, its long-term effect remains unclear. Plastic bronchitis is a rare complication after Fontan palliation.

Diagnostic approach in heart failure

Knowing the baseline heart defect and the history of surgeries and/or percutaneous interventions is mandatory in HF ACHD patients. Diagnosing HF may be difficult as patients often fail to recognize in themselves subtle changes in functional class. Patients might have no typical HF symptoms and signs, despite reduced exercise capacity and reporting New York Heart Association (NYHA) functional class I. Heart failure is therefore a clinical syndrome with a
diagnosis based on history, examination, and investigations. Determining the cause of HF is important, as it may be reversible due to a new or worsening residual haemodynamic lesion or another medical problem, e.g. thyroid dysfunction (Figure 1).

Clinical symptoms and signs

Heart failure symptoms and signs are described in the European Society of Cardiology (ESC) guidelines (Table 2 adapted from ESC HF guidelines). Some patients with complex congenital heart disease may have worsening cyanosis in the context of intra- or extracardiac shunts or fenestrations. Of note, arrhythmias are closely related to HF symptoms and may be the first clinical manifestation of HF.

Electrocardiography

Many ACHD patients have baseline abnormal electrocardiograms (ECGs) with prolonged QRS duration, other intra-ventricular conduction delay, nodal rhythm, and LV (left ventricular) or RV hypertrophy. A change in ECG morphology is therefore most relevant in the ACHD patient. However, each ECG has to be looked after atrio-ventricular (AV) conduction abnormalities (i.e. complete AV block in ccTGA) or for ‘inappropriate’ apparently sinus tachycardia that may mimic atypical supraventricular re-entrant tachycardia.

Imaging

A chest X-ray easily identifies pulmonary congestion and effusions. The position and size of the heart, size of pulmonary arteries and thoracic aorta, and concomitant lung and thorax pathology are simply obtained.

Echocardiography allows to:
- Establish or confirm the underlying congenital heart disease diagnosis
- Identify concomitant/residual lesions and sequelae
- Assess ventricular function (sub-aortic–sub-pulmonary)
- Monitor disease progression
- Detect new ± acquired lesions
- Guide further interventions

Recommendations have been recently published for tetralogy of Fallot (ToF) imaging. Three-dimensional (3D) echocardiography is more sensitive than 2D for the assessment of ventricular function and volumes and valves. **Transoesophageal echocardiography may**
also be indicated. Stress echocardiography helps assessing contractile reserve and diagnoses acquired heart disease such as coronary artery disease (CAD).

Magnetic resonance imaging (MRI) is the golden standard for volumetric measurements, ventricular function, assessment of vessels, and detection of myocardial fibrosis. European Society of Cardiology recommendations for the use of MRI in ACHD patients have been published.

Computed tomography is particularly good for imaging stented valves and coarctation stents along with the epicardial coronary arteries, for collateral arteries, and for parenchymal lung disease.

Cardiac catheterization provides detailed haemodynamic data for calculating pulmonary vascular resistance and for proceeding to structural interventions. Other indications include assessment of LV and RV diastolic function, pressure gradients, and shunt quantification. Coronary angiography and the evaluation of extra-cardiac vessels such as aorto-pulmonary collateral arteries may be indicated.

Cardiopulmonary exercise and lung function test
Cardiopulmonary exercise test is a valuable tool with prognostic implications. The exercise capacity is reduced in ACHD patients. The expected peak oxygen consumption varies between different types of ACHD lesions, and reference values for exercise limitations have been published. There is a good correlation between exercise test results and mortality that seems to be increased in patients with peak oxygen consumption (VO₂) values <15 mL/min/kg. Other prognostic parameters such as ventilator response and oscillatory patterns provide important clinical information. Lung function test is needed to detect concomitant broncho-pulmonary disease.

Laboratory testing
Adult congenital heart disease patients suspected for HF should undergo basic laboratory testing including full blood count, renal function, liver function, protein and albumin, iron, and thyroid function. Laboratory testing may reveal treatable conditions. Anaemia, renal and liver dysfunction, hypoalbuminemia, hyponatremia, and iron depletion have prognostic significance.

Natriuretic peptides
B-type natriuretic peptide (BNP) and N-terminal pro–BNP (NT-proBNP) are related to disease severity and prognosis in HF patients with acquired heart disease. Natriuretic peptides might be also clinically important in congenital heart disease. A recent cross-sectional study showed that BNP correlated with age was higher in women than in men, and differed per diagnosis. Disease-specific correlations were also observed.

Septal defects
B-type natriuretic peptide levels are mildly increased in patients with un repaired and repaired atrial septal defect or VSD. Shunt severity and pulmonary artery pressures correlate strongly with BNP levels. A clear association between BNP and functional class is demonstrated.

Tetralogy of Fallot
Studies in ToF patients showed correlations between plasma BNP, RV dilation, and severity of pulmonary valve regurgitation. Also correlations between BNP and exercise capacity were found. Most studies to date present only cross-sectional data.

B-type natriuretic peptide levels before pulmonary valve

<table>
<thead>
<tr>
<th>Symptoms of systemic ventricular failure</th>
<th>Signs of systemic ventricular failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue</td>
<td>Third or fourth heart sound (gallop)</td>
</tr>
<tr>
<td>Breathlessness</td>
<td>Laterally displaced apical impulse</td>
</tr>
<tr>
<td>Dry cough especially lying flat</td>
<td>Pulmonary crepitations</td>
</tr>
<tr>
<td>Reduced exercise tolerance</td>
<td>Absent BS and dull percussion lung bases due to pleural effusions</td>
</tr>
<tr>
<td>Orthopnoea</td>
<td></td>
</tr>
<tr>
<td>Paroxysmal nocturnal dyspnea</td>
<td></td>
</tr>
<tr>
<td>Wheezing</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symptoms of sub-pulmonary ventricular failure</th>
<th>Signs of sub-pulmonary ventricular failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue</td>
<td>Elevated JVP</td>
</tr>
<tr>
<td>Bloating</td>
<td>Hepatomegaly</td>
</tr>
<tr>
<td>Weight gain (> 2kg/week)</td>
<td>Ascites</td>
</tr>
<tr>
<td>Loss of appetite</td>
<td>Pitting leg oedema, sacral oedema, scrotal oedema</td>
</tr>
<tr>
<td>Reduced exercise tolerance</td>
<td></td>
</tr>
<tr>
<td>Increased abdominal girth</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symptoms of congestive (biventricular) failure</th>
<th>Signs of congestive (biventricular) failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined systemic and sub-pulmonary symptoms</td>
<td>Combined systemic and sub-pulmonary signs</td>
</tr>
</tbody>
</table>

BS, breath sounds; JVP, jugular venous pressure.
replacement were found elevated and decrease afterwards; however, the results of individual BNP measurements differed widely so that the use of BNP changes as marker for outcome remains unclear.35

Systemic morphological right ventricle

A clear correlation was found between BNP and systemic RV function.35 One study showed a correlation between RV ejection fraction and atrial natriuretic peptide (ANP).51 Extensive atrial scarring in Mustard and Senning patients may contribute to elevated ANP levels. Moreover, a strong correlation was observed between plasma BNP and the severity of tricuspid regurgitation (TR).52–59 One longitudinal study described adult patients after atrial switch surgery for TGA.60 They found that BNP was the most prominent predictor for HF, transplantation, and death (hazard ratio of 21). B-type natriuretic peptide might therefore be useful for risk assessment.

Hypoxia and single ventricle

Most studies found no correlation between oxygen saturation and BNP.61–64 B-type natriuretic peptide levels in asymptomatic Fontan patients were comparable with those of healthy controls. However, in symptomatic patients, there was a strong correlation between BNP and the severity of HF. One study found significantly higher levels of BNP in five patients who died from HF,65 while another found no prognostic value of BNP.66 B-type natriuretic peptide measurement may be useful in symptomatic patients.

Medical treatment

Systolic failure of the morphological systemic left ventricle

Trials with hard clinical endpoints have not been done in ACHD patients. The current ESC guidelines for HF18 suggest that diuretics, renin–angiotensin–aldosterone system (RAAS) blockers, \(\beta \)-blockers, and mineralocorticoid receptor antagonists can be used in the con genital heart disease population, mainly when neurohormonal and cardiac autonomic nervous system activation is increased.66–68

There is theoretical evidence to support the use of angiotensin-converting enzyme inhibitors (ACEIs) and, if not tolerated, angiotensin receptor blockers (ARB) in the treatment of asymptomatic or symptomatic HF ACHD patients. Similarly, the evidence for using \(\beta \)-blockers, such as carvedilol, metoprolol, bisoprolol, and nebivolol, may also be extrapolated to the ACHD population. Preliminary data suggest a favourable effect of these drugs in HF secondary to aortic69,70 or mitral valve disease.71

Many of these medications are prescribed for other indications, such as high blood pressure or arrhythmias, and this allows initiating drug treatment despite missing evidence in ACHD. Any treatment should serve one of two purposes: to improve prognosis or to alleviate symptoms. Loop diuretics never showed improved survival in chronic HF patients18 but relief symptoms such as dyspnoea and peripheral oedema. Digoxin, once widely used in HF, now has a more limited role, as there is no mortality benefit when compared with placebo.

Systolic failure of the morphological systemic right ventricle

A systemic RV will gradually fail.72–74 Extrapolating the ESC HF guidelines18 to this ACHD group is more difficult. The cut-off of impaired ejection fraction of a systemic LV at which drug treatment has clinical benefit is well defined. However, no such data exist for the systemic RV. In most adults with a systemic RV, the systolic function is abnormal with a lower ejection fraction and lower exercise performance vs. controls.75,76

For an asymptomatic patient without signs of HF, it is difficult to know if and when to initiate HF treatment. Patients with stable systemic RV function have not always an activated neurohormonal and cardiac autonomic nervous system. Therefore, blocking the RAAS does not result in better clinical outcome,77–79 although surrogate endpoints (exercise duration, degree of systemic AV valve regurgitation) seem to be influenced positively.78,80 Caution is required when using drugs that venodilate and reduce preload in Mustard or Senning patients. Ventricular filling is significantly compromised by concomitant baffle obstruction. \(\beta \)-Blockers might improve functional capacity and surrogate endpoints such as the severity of systemic AV valve regurgitation and RV remodelling.81–83 However, patients with Mustard or Senning repair or with ccTGA are all susceptible to conduction abnormalities.

In symptomatic patients with neurohormonal and cardiac autonomic nervous system activation, standard HF treatment might offer theoretical benefits84,85 and is therefore suggested to be administered as in patients with a failing LV.

Systolic failure of the morphological sub-pulmonary right ventricle

No randomized controlled trials investigated which drugs to use. The beneficial effects of RAAS blockade or \(\beta \)-blockers have never been studied. Lack of data on the failing sub-pulmonary RV implies only few recommendations in the ESC guidelines on HF18 or pulmonary hypertension.86 No medical treatment is indicated in asymptomatic patients. Diuretics are mainly the treatment of a symptomatic patient. Thiazides can be added in more resistant cases of oedema and act synergistically with loop diuretics, but then renal function and biochemical markers need close surveillance.87 If RV failure is secondary to pulmonary arterial hypertension, drug therapy mainly focuses on the pulmonary circulation using endothelin receptor antagonists, phosphodiesterase inhibitors, or prostacyclines.

Systolic failure of the single ventricle

Phosphodiesterase inhibitors or endothelin receptor antagonists may improve ventricular function in a Fontan patient, when increasing pulmonary vascular resistance impairs ventricular filling. In patients treated with sildenafil, pulmonary vascular resistance decreases,82 exercise performance increases,88 and myocardial performance ameliorates.89 The effect of bosentan in the Fontan patient is less certain. Some studies suggest a beneficial effect,90 whereas others did not.91 Perhaps, the combined increase in preload and reduction in afterload, which is more pronounced with sildenafil treatment, improves more the haemodynamics in the Fontan patient.72

Primary myocardial dysfunction in Fontan requires standard HF medication for symptom relief in both, morphological left and right
ventricles. However, in an asymptomatic patient with an impaired systemic right ventricle, the effect of medical treatment is unclear. Loop diuretics are frequently used if there is pulmonary fluid overload, but too high a dose can reduce preload and lead to the cardio-renal syndrome. Spironolactone appears to have an impact on PLE and endothelial function. One study showed that enalapril did not enhance exercise capacity in Fontan patients. The indication for RAAS blockers in the Fontan is uncertain. Carvedilol has been shown to improve HF signs and symptoms. In summary, reducing pulmonary vascular resistance and afterload seems to have most clinical benefit, while symptomatic treatment with diuretics should be used cautiously and judiciously.

Standard HF treatment of patients with a functional univentricular heart and intra-cardiac shunt implies a difficult balance. Peripheral or pulmonary oedema can be treated with loop diuretics. However, drugs that reduce afterload may increase right-to-left shunting and lower the systemic oxygen saturation.

Table 3 Medical treatment for heart failure related to intrinsic myocardial dysfunction

<table>
<thead>
<tr>
<th>Systolic HF</th>
<th></th>
<th>Asymptomatic or symptomatic</th>
<th>RAAS blockers</th>
<th>β-Blockers</th>
<th>Mineralocorticoid receptor antagonists</th>
<th>Diuretics (loop and thiazide)</th>
<th>Digoxin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemic ventricle</td>
<td>Morphological left ventricle (EF < 40%)</td>
<td>Asymptomatic or symptomatic</td>
<td>RAAS blockers</td>
<td>β-Blockers</td>
<td>Mineralocorticoid receptor antagonists</td>
<td>Diuretics (loop and thiazide)</td>
<td>Digoxin</td>
</tr>
<tr>
<td></td>
<td>Morphological right ventricle (EF < 40%)</td>
<td>Asymptomatic Symptomatic</td>
<td>No medical treatment</td>
<td>RAAS blockers</td>
<td>Beta-blockers</td>
<td>Mineralocorticoid receptor antagonists</td>
<td>Diuretics (loop and thiazide)</td>
</tr>
<tr>
<td>Sub-pulmonary ventricle</td>
<td>Morphological left or right ventricle (EF < 40%)</td>
<td>Asymptomatic Symptomatic</td>
<td>No medical treatment</td>
<td>Diuretics (loop and thiazide)</td>
<td>Mineralocorticoid receptor antagonists</td>
<td>Pulmonary vasodilators (PAH)</td>
<td></td>
</tr>
<tr>
<td>Single ventricle</td>
<td>Fontan circulation (EF < 40%)</td>
<td>Asymptomatic</td>
<td>RAAS blockers</td>
<td>β-Blockers</td>
<td>Mineralocorticoid receptor antagonists</td>
<td>Diuretics (loop and thiazide)</td>
<td>Digoxin</td>
</tr>
<tr>
<td>Morphological left ventricle</td>
<td>Asymptomatic</td>
<td>RAAS blockers</td>
<td>β-Blockers</td>
<td>Mineralocorticoid receptor antagonists</td>
<td>Diuretics (loop and thiazide)</td>
<td>Digoxin</td>
<td></td>
</tr>
<tr>
<td>Morphological right ventricle</td>
<td>Asymptomatic</td>
<td>RAAS blockers</td>
<td>β-Blockers</td>
<td>Mineralocorticoid receptor antagonists</td>
<td>Diuretics (loop and thiazide)</td>
<td>Digoxin</td>
<td></td>
</tr>
<tr>
<td>Persistent right-to-left shunt</td>
<td>Asymptomatic</td>
<td>No medical treatment</td>
<td>Diuretics (loop and thiazide)</td>
<td>Rate-limiting calcium channel blocker</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF with preserved EF</td>
<td></td>
<td>Asymptomatic or symptomatic</td>
<td>RAAS blockers</td>
<td>β-Blockers</td>
<td>Mineralocorticoid receptor antagonists</td>
<td>Diuretics (loop and thiazide)</td>
<td>Rate-limiting calcium channel blocker</td>
</tr>
</tbody>
</table>

EF, ejection fraction; PAH, pulmonary arterial hypertension; PAP, pulmonary arterial pressure.
symptoms, and quality of life (QoL) and reduces the number of HF hospitalizations. 100 Although no specific trials on iron replacement exist in HF ACHD patients, a similar beneficial effect might be expected. Indeed, iron deficiency is not uncommon in ACHD patients 101,102 and replacement might improve functional capacity. 103 In contrast, vitamin B12 and folate deficiency are relatively rare in patients with chronic HF. 104 and the effect of replacement on outcomes, including HF ACHD patients, needs further investigation. Some data suggest that the use of anti-platelet therapy or oral anticoagulants may improve outcomes in advanced HF. 105 This has never been investigated in HF ACHD patients, but it might be considered beneficial in HF secondary to ischaemic heart disease or atrial arrhythmia.

Acute heart failure in adult congenital heart disease patients

There are no scientific trials to guide clinicians on specifically managing ACHD patients with acute HF. Nevertheless, most of the ESC guidelines for managing acute HF 18 can be applied in this context, taking into account the greater complexity and varied comorbidities on a case-by-case basis. For example, in patients with pulmonary hypertension and/or persistent intra- or extra-cardiac shunts, the balance between pulmonary vascular resistance and systemic vascular resistance must be borne in mind and is a crucial consideration when prescribing pharmacotherapy. 106 Any increase in pulmonary vascular resistance will decrease cardiac output, and, in the presence of an intra-cardiac shunt, any decrease in systemic vascular resistance will increase the likelihood of right-to-left shunting and systemic desaturation. Triggers that increase pulmonary vascular resistance (hypoxia, hypercapnia, high haematocrit, positive pressure ventilation, cold, metabolic acidosis, and alpha-adrenergic stimulation) and those that decrease systemic vascular resistance (vasodilators, general anaesthesia, and hyperthermia) must therefore be avoided where possible. 106 Moreover, if there is a persistent right-to-left shunt, there is a risk of paradoxical air or thromboemboli and intravenous lines must be meticulously managed preferably with bubble filters attached. Patients with cyanosis have a secondary erythrocytosis and both an increased bleeding and thrombosis risk, which is generally more pronounced in the setting of acute HF. Coagulation factors and platelets should therefore be monitored, iron deficiency corrected, and venesection considered if the haematocrit exceeds 65%.

Cardiac monitoring of the ACHD patient in acute HF must also take into account the underlying congenital lesion, e.g. the patient with a subclavian flap repair of coarctation of the aorta should have blood pressure measured in the right arm as the left subclavian has been used for the repair, or placement of a central line in a Fontan patient, which sits in the pulmonary artery, and is therefore not a reliable measure of systemic venous filling pressure. 106

Finally, if maximal medical treatment fails to stabilize the haemodynamics, then extra-corporal membrane oxygenation (ECMO) and or ventricular assist device (VAD) therapy should be considered as bridging therapy to transplantation.

Cardiopulmonary and physical rehabilitation in adult congenital heart disease patients with heart failure

Cardiopulmonary rehabilitation is since long time recommended in patients with chronic HF. 18,107 Indeed, exercise training is safe and tends to benefit clinical outcome. 108,109 In HF ACHD patients, no specific studies have been conducted to evaluate clinical outcome. However, exercise training seems to improve safely exercise-related and haemodynamic variables in complex congenital heart disease. 110-112 Moreover, cardiac rehabilitation programmes improve QoL in ACHD; however, none of them suffered from HF. 113 Cardiac rehabilitation is probably safe and beneficial. However, further research is needed. A recent position paper recommends individualized exercise prescription to improve long-term health behaviour, and includes also advice for HF ACHD patients. 114

Device therapy in adult congenital heart disease patients with heart failure

Indications for implantable cardioverter defibrillator therapy

The incidence of sudden cardiac death (SCD) in the congenital heart disease population is low (<0.1% per year) and 5–10 times lower than in the Multicenter Automatic Defibrillator Implantation Trial (MADIT) II population. 115 However, SCD accounts for 20–25% of late deaths in ACHD patients. 4,116 There are subgroups of congenital heart disease patients carrying a slightly higher SCD risk such as patients after surgical repair ofToF, d-TGA with Mustard or Senning repairs, ccTGA, Eisenmenger syndrome, and Ebstein anomaly of the tricuspid valve. 116 In ACHD patients, consensus exists on implantable cardioverter defibrillator (ICD) therapy for secondary prevention of SCD. 115 Implantable cardioverter defibrillator therapy is recommended in survivors of SCD due to ventricular fibrillation (VF) or unstable ventricular tachycardia (VT) without reversible cause, patients with documented spontaneous sustained VT (sVT) that is not amenable to ablation or surgery, and syncope of unknown origin with inducible sVT/ VF at electrophysiology (EP) study or a high suspicion of ventricular arrhythmias being the cause of syncope.

Selection of ICD candidates for primary prevention of SCD still remains challenging. In general, prophylactic ICD therapy is also indicated in those patients who meet the same standard criteria as patients with ischaemic or non-ischaemic cardiomyopathy, i.e. the presence of biventricular physiology with a systemic LV ejection fraction <35% and NYHA class II or III symptoms. 117-122 Non-sVT (nsVT) in ToF patients is significantly associated with inducible sVT by programmed ventricular stimulation and that inducible sVT carries a five-fold higher rate of clinical VT or SCD. 123 Moreover, a weighted risk score to predict appropriate ICD shocks in ToF patients with prophylactic ICD implantation has been developed, implementing additive factors of risk stratification such as left
Cardiac resynchronization therapy (CRT) is an established treatment option in LV electromechanical dyssynchrony. If response to CRT is positive, reverse remodelling of the LV, functional improvement, and a reduction in HF associated morbidity and mortality can be seen. In ACHD patients, the morphological heterogeneity of the underlying heart defects makes it far more difficult to define the role of CRT. Most of the studies available are retrospective in nature and follow-up time in all trials is limited to a few months (4.8–8.4 months); hence, the impact of CRT on long-term morbidity and mortality is not known. Surrogate parameters such as metrics of systemic ventricular function or functional parameters such as NYHA class were used to define CRT response. Despite these limitations, the following observations were made: (i) the majority of congenital heart disease patients included (58%) were in NYHA class II when compared with NYHA class III or IV patients; (ii) the proportion of non-responders to CRT was ≏10% of the HT indications in patients of 18–30 years. Although short-term outcomes are worse in ACHD than to those with non-ACHD (20–30% at 30 days mortality in ACHD patients), late-term survival of ACHD is improved and survival at 10 years is similar between patients with ACHD and those with acquired heart disease. The outcomes after ACHD HT can vary according to different diagnosis and may be influenced by centre’s expertise. Timing of assessment for HT remains challenging, as accurate prediction of prognosis is difficult. There is no single prognostic variable to be able to provide a perfect discriminatory capacity on need for or timing of HT. Serial cardiopulmonary exercise testing and other prognostic variables such as hospitalizations, clinically relevant arrhythmia, symptomatic HF, PLE, and plastic bronchitis may help to differentiate those ACHD patients from who do not deserve to be assessed for HT.

Heart transplantation and assist devices

According to the 2014 International Society for Heart Transplantation (ISHLT) Registry, ACHD represents ≏10% of the HT indications in patients of 18–30 years. Although short-term outcomes are worse in ACHD than to those with non-ACHD (20–30% at 30 days mortality in ACHD patients), late-term survival of ACHD is improved and survival at 10 years is similar between patients with ACHD and those with acquired heart disease. The outcomes after ACHD HT can vary according to different diagnosis and may be influenced by centre’s expertise. Timing of assessment for HT remains challenging, as accurate prediction of prognosis is difficult. There is no single prognostic variable to be able to provide a perfect discriminatory capacity on need for or timing of HT. Serial cardiopulmonary exercise testing and other prognostic variables such as hospitalizations, clinically relevant arrhythmia, symptomatic HF, PLE, and plastic bronchitis may help to differentiate those ACHD patients from who do not deserve to be assessed for HT.

Careful pre-transplant evaluation should be specifically done to assess pulmonary vascular resistance; the presence of disease in organ systems that could affect post-HT care and can (or cannot) be reversed with HT; the presence of chronic or previous infections that could affect both pre- and post-HT management; psychosocial evaluation of the patient and caregivers; patency of major veins and arteries; human leucocyte antigen sensitization; and surgical risk (multiple cardiac redo operations, great vessels anatomy).

Ventricular assist devices (VADs) may be used as destination therapy or bridging to HT in ACHD patients. However, such patients listed for HT have less likelihood to have a VAD as a bridge to HT, longer waiting time in status 2, and higher mortality risk in the waiting list. Several case reports describe successful use of LV assist devices in failing systemic right ventricles. However, complication rates remain relatively high and are related to anatomical complexity and associated morbidities (coagulopathy, liver cirrhosis, etc.). Ventricular assist devices might be applicable in a failing Fontan circulation, however, only in these patients with systemic ventricular failure. In case that the sub-pulmonary ventricle (as after Fallot repair) fails, an RV assist device might be useful, but clinical outcome data are lacking.

Management of care, psychological issues, and nursing management

The complexity of most heart diseases leads to a systematic follow-up in specialized ACHD centres. Less complex and stable patients are frequently followed in secondary care centres. They have to
be aware of the occurrence of HF and to detect it in its early stage. Especially in complex cases or cases in which evidence-based medicine is lacking, transfer to a specialized ACHD centre is preferred. This might be important when HF becomes drug therapy resistant, and bridging to or listing for HT is needed.

Frequency of follow-up is reported in the ESC guidelines for the management of grown-up congenital heart disease. Frequency of follow-up is reported in the ESC guidelines for the management of grown-up congenital heart disease.

This is important for optimizing health behaviour and treatment adherence. Follow-up visits and educational interventions contribute to persons’ well-being and improve the level of patients’ knowledge on the condition of their heart. Depending on the (proceeding) symptomatology and (in)stability of the disease process, more frequent follow-ups become obligatory. Routine follow-up implies focus on risk factors (as palpitations, syncope), clinical examination, and electrocardiographic and echocardiographic evaluation. Depending on the symptomatology, changes in BNP levels need to be controlled, 24 h Holter/bicycle testing is indicated, and if the patient remains unstable, invasive evaluation will be preferred.

Sexual activity is not harmful for the heart, advice for pregnancy, contraception and labour in the female subgroup, and recommendations about physical activities are discussed in the ESC guidelines on pregnancy and the ESC position paper about physical activities in pregnancy and the ESC position paper about physical activities in ACHD.

Many patients with congenital heart disease deal with social and psychological concerns that may influence QoL. Psychological condition is correlated with depression, anxiety, and impaired QoL. Possible interventions at improving illness perceptions may enhance patients’ QoL, by increasing patients’ knowledge regarding their disease and informing patients about treatment options, psychosocial support, cognitive behavioural therapies, and palliative care.

They need life-long comprehensive care to which nurses are an integral part of the health-care team. Nursing assessment includes physical, psychosocial, and knowledge examination.

Conclusions

Heart failure in adult patients with congenital heart disease overshadows more and more the outcome of this patient population. No large randomized clinical trials are available to write guidelines with a certain level of evidence. However, HF strategies, effective in ischemic and congestive heart disease, are frequently applied to patients with congenital heart defects. This position paper intends to offer a platform to parallelize HF treatment in the congenital heart disease community abroad. However, it is clear that more research is needed to reach a certain level of evidence-based medicine.

Authors’ contributions

W.B., J.R.-H., T.R.-H., A.E., T.A.M., E.L., M.C.-L., F.W., and A.A.F. drafted the manuscript. Board members of Working Group of GUCH and board members of Heart Failure Association made critical revision of the manuscript for key intellectual content.

Acknowledgements

We thank Prof. Dr. Gerasimos Filipatos, President of the Heart Failure Association (HFA), the board members of the HFA, and the nucleus members of the Working Group of Grown-Up Congenital Heart Disease (WG GUCH) for their support and useful suggestions to this manuscript. Board members of HFA: Gerasimos Filipatos (Greece); Stefan Anker (Germany); Frank Ruschitzka (Switzerland); Theresa McDonagh (co-author, UK); Christoph Maack (Germany); Arno Hoes (The Netherlands); Jillian Riley (UK); Alexandre Mebazaa and Andrew Coats (UK); Johan Bauerachs (Germany); Rudolf de Boer (The Netherlands); Veli Pekka Harjola (Finland); Mitja Lainscak (Slovenia); Yury Lopatin (Russia); Giuseppe Rosano (Italy); Massimo Piepoli (Italy); Ekaterina Lambrou-nou (co-author, Cyprus); Stephanie Heymans (The Netherlands); Marisa Crespo Leiro (co-author, Spain); Adelino Leite-Moreira (Portugal); and Piotr Ponikowski (Poland). Board members of WG GUCH: Andreas Eicken (Germany); Johan Holm (Sweden); Werner Buds (co-author, Belgium); Markus Schwerzmann (Switzerland); Jolien Roos-Hessink (co-author, The Netherlands); Julie De Backer (Belgium); Lorna Swan (UK); Gerhard Diller (Germany); Allesandro Giamberti and Massimo Chessa (Italy); Fiona Walker (co-author, UK); and Garry Webb (USA).

Funding

The authors received a writing grant from the European Society of Cardiology.

Conflict of interest: none declared.

References

1427a

peptide in adults after Mustard procedure for transposition of the great arteries.

